STAT 5010 Tutorial 3^{*}

Nov. 2022

Definitions

- 1. Let X be a sample from a population $P \in \mathcal{P}$. A *statistical decision* is an *action* that we take after we observe X, for example, a conclusion about P or a characteristic of P. Throughout this section, we use \mathbb{A} to denote the set of allowable actions. Let $\mathcal{F}_{\mathbb{A}}$ be a σ -field on \mathbb{A} . Then the measurable space $(\mathbb{A}, \mathcal{F}_{\mathbb{A}})$ is called the *action space*. Let \mathcal{X} be the range of X and $\mathcal{F}_{\mathcal{X}}$ be a σ -field on \mathcal{X} . A *decision rule* is a measurable function (a statistic) T from $(\mathcal{X}, \mathcal{F}_{\mathcal{X}})$ to $(\mathbb{A}, \mathcal{F}_{\mathbb{A}})$. If a decision rule T is chosen, then we take the action $T(X) \in \mathbb{A}$ whence X is observed.
- 2. The construction or selection of decision rules cannot be done without any criterion about the performance of decision rules. In statistical decision theory, we set a criterion using a loss function L, which is a function from $\mathcal{P} \times \mathbb{A}$ to $[0, \infty)$ and is Borel on $(\mathbb{A}, \mathcal{F}_{\mathbb{A}})$ for each fixed $P \in \mathcal{P}$. If X = x is observed and our decision rule is T, then our "loss" (in making a decision) is L(P, T(x)). The average loss for the decision rule T, which is called the risk of T, is defined to be

$$R_T(P) = E[L(P, T(X))] = \int_X L(P, T(X))dP_X(X).$$

3. The loss and risk functions are denoted by $L(\theta, a)$ and $R_T(\theta)$ if \mathcal{P} is a parametric family indexed by θ . A decision rule with small loss is preferred. But it is difficult to compare $L(P, T_1(X))$ and $L(P, T_2(X))$ for two decision rules, T_1 and T_2 , since both of them are random. A rule T_1 is as good as another rule T_2 if and only if

$$R_{T_1}(P) \leq R_{T_2}(P)$$
 for any $P \in \mathcal{P}$,

and is *better* than T_2 if and only if the inequality above holds and $R_{T_1}(P) < R_{T_2}(P)$ for at least one $P \in \mathcal{P}$. Two decision rules T_1 and T_2 are *equivalent* if and only if $R_{T_1}(P) = R_{T_2}(P)$ for all $P \in \mathcal{P}$. If there is a decision rule T_* that is as good as any other rule in \mathfrak{I} , a class of allowable decision rules, then T_* is said to be \mathfrak{I} -optimal (or optimal if \mathfrak{I} contains all possible rules).

- 4. Let \Im be a class of decision rules (randomized or nonrandomized). A decision rule $T \in \Im$ is called \Im admissible (or admissible when \Im contains all possible rules) if and only if there does not exist any $S \in \Im$ that is better than T (in terms of the risk).
- 5. Now we consider an average of $R_T(P)$ over $P \in \mathcal{P}$:

$$r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi(P),$$

where Π is a known probability measure on $(\mathcal{P}, \mathcal{F}_{\mathcal{P}})$ with an appropriate σ -field $\mathcal{F}_{\mathcal{P}}$. $r_T(\Pi)$ is called the *Bayes risk* of T w.r.t. Π . If $T_* \in \mathfrak{S}$ and $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any $T \in \mathfrak{S}$, then T_* is called a \mathfrak{F} -*Bayes rule* (or *Bayes rule* when \mathfrak{S} contains all possible rules) w.r.t. Π . The second method is to consider the worst situation, i.e., $\sup_{P \in \mathcal{P}} R_T(P)$. If $T_* \in \mathfrak{S}$ and $\sup_{P \in \mathcal{P}} R_{T_*}(P) \leq \sup_{P \in \mathcal{P}} R_T(P)$ for any $T \in \mathfrak{S}$, then T_* is called a \mathfrak{F} -*minimax* rule (or *minimax* rule when \mathfrak{F} contains all possible rules).

6. A prior is called a *conjugate* prior if the posterior is in the same parametric family of distributions as that of the prior.

Propositions and Theorems

- 1. With squared error loss, the Bayes estimator is the mean of the posterior distribution.
- 2. Suppose that \mathbb{A} is a convex subset of \mathcal{R}^k and that for any $P \in \mathcal{P}, L(P, a)$ is a convex function of a. Let T be a sufficient statistic for $P \in \mathcal{P}, T_0 \in \mathcal{R}^k$ be a nonrandomized rule satisfying $E ||T_0|| < \infty$, and $T_1 = E[T_0(X) | T]$. Then $R_{T_1}(P) \leq R_{T_0}(P)$ for any $P \in \mathcal{P}$. If L is strictly convex in a and T_0 is not a function of T, then T_0 is inadmissible.
- 3. Suppose that A is a subset of \mathcal{R}^k . Let T(X) be a sufficient statistic for $P \in \mathcal{P}$ and let δ_0 be a decision rule. Then

$$\delta_1(t, A) = E\left[\delta_0(X, A) \mid T = t\right],$$

which is a randomized decision rule depending only on T, is equivalent to δ_0 if $R_{\delta_0}(P) < \infty$ for any $P \in \mathcal{P}$. *Dept. of Stat., CUHK. TA: YX

Question 1

1. Let \bar{X} be the sample mean of a random sample of size n from $N(\theta, \sigma^2)$ with a known $\sigma > 0$ and an unknown $\theta \in \mathcal{R}$. Let $\pi(\theta)$ be a prior density with respect to a σ -finite measure ν on \mathcal{R} .

Show that the posterior mean of θ , given $\bar{X} = x$, is of the form

$$\delta(x) = x + \frac{\sigma^2}{n} \frac{d \log(p(x))}{dx},$$

where p(x) is the marginal density of \bar{X} , unconditional on θ .

Solution: See the handout later.

Question 2

1. Prove Proposition 3.

Solution: See the handout later.