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Definitions

1. Let X be a sample from a population P ∈ P. A statistical decision is an action that we take after we
observe X, for example, a conclusion about P or a characteristic of P . Throughout this section, we use
A to denote the set of allowable actions. Let FA be a σ-field on A. Then the measurable space (A,FA)
is called the action space. Let X be the range of X and FX be a σ-field on X . A decision rule is a
measurable function (a statistic) T from (X ,FX ) to (A,FA). If a decision rule T is chosen, then we take
the action T (X) ∈ A whence X is observed.

2. The construction or selection of decision rules cannot be done without any criterion about the performance
of decision rules. In statistical decision theory, we set a criterion using a loss function L, which is a function
from P ×A to [0,∞) and is Borel on (A,FA) for each fixed P ∈ P. If X = x is observed and our decision
rule is T , then our ”loss” (in making a decision) is L(P, T (x)). The average loss for the decision rule T ,
which is called the risk of T , is defined to be

RT (P ) = E[L(P, T (X))] =

∫
X

L(P, T (x))dPX(x).

3. The loss and risk functions are denoted by L(θ, a) and RT (θ) if P is a parametric family indexed by θ. A
decision rule with small loss is preferred. But it is difficult to compare L (P, T1(X)) and L (P, T2(X)) for
two decision rules, T1 and T2, since both of them are random. A rule T1 is as good as another rule T2 if
and only if

RT1
(P ) ≤ RT2

(P ) for any P ∈ P,

and is better than T2 if and only if the inequality above holds and RT1(P ) < RT2(P ) for at least one
P ∈ P. Two decision rules T1 and T2 are equivalent if and only if RT1(P ) = RT2(P ) for all P ∈ P. If
there is a decision rule T∗ that is as good as any other rule in ℑ, a class of allowable decision rules, then
T∗ is said to be ℑ-optimal (or optimal if ℑ contains all possible rules).

4. Let ℑ be a class of decision rules (randomized or nonrandomized). A decision rule T ∈ ℑ is called ℑ-
admissible (or admissible when ℑ contains all possible rules) if and only if there does not exist any S ∈ ℑ
that is better than T (in terms of the risk).

5. Now we consider an average of RT (P ) over P ∈ P :

rT (Π) =

∫
P
RT (P )dΠ(P ),

where Π is a known probability measure on (P,FP) with an appropriate σ-field FP . rT (Π) is called the
Bayes risk of T w.r.t. Π. If T∗ ∈ ℑ and rT∗(Π) ≤ rT (Π) for any T ∈ ℑ, then T∗ is called a ℑ-Bayes rule
(or Bayes rule when ℑ contains all possible rules) w.r.t. Π. The second method is to consider the worst
situation, i.e., supP∈P RT (P ). If T∗ ∈ ℑ and supP∈P RT∗(P ) ≤ supP∈P RT (P ) for any T ∈ ℑ, then T∗ is
called a ℑ-minimax rule (or minimax rule when ℑ contains all possible rules).

6. A prior is called a conjugate prior if the posterior is in the same parametric family of distributions as that
of the prior.

Propositions and Theorems

1. With squared error loss, the Bayes estimator is the mean of the posterior distribution.

2. Suppose that A is a convex subset of Rk and that for any P ∈ P, L(P, a) is a convex function of a.
Let T be a sufficient statistic for P ∈ P, T0 ∈ Rk be a nonrandomized rule satisfying E ∥T0∥ < ∞, and
T1 = E [T0(X) | T ]. Then RT1

(P ) ≤ RT0
(P ) for any P ∈ P. If L is strictly convex in a and T0 is not a

function of T , then T0 is inadmissible.

3. Suppose that A is a subset of Rk. Let T (X) be a sufficient statistic for P ∈ P and let δ0 be a decision rule.
Then

δ1(t, A) = E [δ0(X,A) | T = t] ,

which is a randomized decision rule depending only on T , is equivalent to δ0 if Rδ0(P ) < ∞ for any P ∈ P.
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Question 1

1. Let X̄ be the sample mean of a random sample of size n from N
(
θ, σ2

)
with a known σ > 0 and an unknown

θ ∈ R. Let π(θ) be a prior density with respect to a σ-finite measure ν on R.

Show that the posterior mean of θ, given X̄ = x, is of the form

δ(x) = x+
σ2

n

d log(p(x))

dx
,

where p(x) is the marginal density of X̄, unconditional on θ.

Solution: See the handout later.

Question 2

1. Prove Proposition 3.

Solution: See the handout later.
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