STAT 5010 Tutorial 4^{*}

Nov. 2022

Definitions

- 1. Let \Im be a class of decision rules (randomized or nonrandomized). A decision rule $T \in \Im$ is called \Im admissible (or admissible when \Im contains all possible rules) if and only if there does not exist any $S \in \Im$ that is better than T (in terms of the risk).
- 2. Now we consider an average of $R_T(P)$ over $P \in \mathcal{P}$:

$$r_T(\Pi) = \int_{\mathcal{P}} R_T(P) d\Pi(P),$$

where Π is a known probability measure on $(\mathcal{P}, \mathcal{F}_{\mathcal{P}})$ with an appropriate σ -field $\mathcal{F}_{\mathcal{P}}$. $r_T(\Pi)$ is called the *Bayes risk* of T w.r.t. Π . If $T_* \in \mathfrak{S}$ and $r_{T_*}(\Pi) \leq r_T(\Pi)$ for any $T \in \mathfrak{S}$, then T_* is called a \mathfrak{F} -*Bayes rule* (or *Bayes rule* when \mathfrak{S} contains all possible rules) w.r.t. Π . The second method is to consider the worst situation, i.e., $\sup_{P \in \mathcal{P}} R_T(P)$. If $T_* \in \mathfrak{S}$ and $\sup_{P \in \mathcal{P}} R_{T_*}(P) \leq \sup_{P \in \mathcal{P}} R_T(P)$ for any $T \in \mathfrak{S}$, then T_* is called a \mathfrak{F} -*minimax* rule (or *minimax* rule when \mathfrak{F} contains all possible rules).

3. To test the hypotheses H_0 versus H_1 , there are only two types of statistical errors we may commit: rejecting H_0 when H_0 is true (called the *type I error*) and accepting H_0 when H_0 is wrong (called the *type II error*). In statistical inference, a test T, which is a statistic from \mathcal{X} to $\{0,1\}$, is assessed by the probabilities of making two types of errors:

$$\alpha_T(P) = P(T(X) = 1) \quad P \in \mathcal{P}_0$$

and

$$1 - \alpha_T(P) = P(T(X) = 0) \quad P \in \mathcal{P}_1,$$

which are denoted by $\alpha_T(\theta)$ and $1 - \alpha_T(\theta)$ if P is in a parametric family indexed by θ . Note that these are risks of T under the 0 - 1 loss in statistical decision theory. However, an optimal decision rule (test) does not exist even for a very simple problem with a very simple class of tests (Example).

4. A common approach to finding an "optimal" test is to assign a small bound α to one of the error probabilities, say $\alpha_T(P), P \in \mathcal{P}_0$, and then to attempt to minimize the other error probability $1 - \alpha_T(P), P \in \mathcal{P}_1$, subject to

$$\sup_{P\in\mathcal{P}_0}\alpha_T(P)\leq\alpha.$$

- The bound α is called the *level of significance*. The left-hand side above is called the *size* of the test T. Note that the level of significance should be positive, otherwise no test satisfies the inequality above except the silly test $T(X) \equiv 0$ a.s. \mathcal{P} .
- 5. For most tests satisfying the inequality above, a small α leads to a "small" rejection region. It is good practice to determine not only whether H_0 is rejected or accepted for a given α and a chosen test T_{α} , but also the smallest possible level of significance at which H_0 would be rejected for the computed $T_{\alpha}(x)$, i.e., $\hat{\alpha} = \inf \{ \alpha \in (0, 1) : T_{\alpha}(x) = 1 \}$. Such an $\hat{\alpha}$, which depends on x and the chosen test and is a statistic, is called the *p*-value for the test T_{α} .

Propositions and Theorems

1. (TPE Lemma 5.1.13) If δ_{Λ} is the Bayes estimator of $g(\theta)$ with respect to Λ and if

$$r_{\Lambda} = E \left[\delta_{\Lambda}(\mathbf{X}) - g(\Theta) \right]^2$$

is its Bayes risk, then

$$r_{\Lambda} = \int \operatorname{var}[g(\Theta) \mid \mathbf{x}] dP(\mathbf{x}).$$

In particular, if the posterior variance of $g(\Theta) \mid \mathbf{x}$ is independent of \mathbf{x} , then

$$r_{\Lambda} = \operatorname{var}[g(\Theta) \mid \mathbf{x}].$$

^{*}Dept. of Stat., CUHK. TA: YX

2. (TPE Theorem 5.1.12) Suppose that $\{\Lambda_n\}$ is a sequence of prior distributions with Bayes risks r_n satisfying $r_n \leq r = \lim_{n \to \infty} r_n$ and that δ is an estimator for which

$$\sup_{\alpha} R(\theta, \delta) = r.$$

Then (i) δ is minimax and (ii) the sequence $\{\Lambda_n\}$ is least favorable.

- 3. For $X \sim N(\theta, I_p)$ $(p \ge 3)$ with θ unknown. Under loss $L(\theta, a) = ||a \theta||^2 = \sum_{i=1}^{p} (a_i \theta_i)^2$, X is a minimax estimator. But X is inadmissible and dominated by the James-Stein estimator $\delta_c = X \frac{p-2}{||X-c||^2}(X-c)$
- 4. Following the previous proposition, the James-Stein estimator with any c is still inadmissible and dominated by $\delta_c^+ = X \min\{1, \frac{p-2}{||X-c||^2}\}(X-c)$.

Question 1

- 1. Let X be an observation from the Poisson distribution with unknown mean $\theta > 0$. Consider the estimation of θ under the squared error loss.
 - (i) Show that $\sup_{\theta} R_T(\theta) = \infty$ for any estimator T = T(X), where $R_T(\theta)$ is the risk of T.
 - (ii) Let $\Im = \{aX + b : a \in \mathcal{R}, b \in \mathcal{R}\}$. Show that 0 is an admissible estimator of θ within \Im .

Solution: See the handout later.